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a  b  s  t  r  a  c  t

This article  addresses  the  problem  of  designing  therapies  for  the myeloma  bone  disease  that  optimize  in a
systematic  way  a compromise  between  drug  toxicity  and  tumor  repression.  For  that  sake,  the  techniques
of  optimal  control  are  applied  to  the  dynamics  of  tumor  growth,  and  the necessary  conditions  of  Pontrya-
gin’s  minimum  principle  are  solved  using  a numerical  relaxation  algorithm.  A  therapy  to  accelerate  bone
eywords:
ptimal control
eceding horizon
umor

mass  recovery  is applied  in  parallel,  based on a  PI  control  rule.  Since  the  optimal  controller  provides  an
open-loop  control,  it is turned  into  a  feedback  law  by  following  a receding  horizon  strategy.  For  that  sake,
an optimal  manipulated  variable  profile  is first computed  over a time  horizon,  but  only the  initial  part
of  this  function  is  applied.  The  whole  optimization  procedure  is then  repeated  starting  at  a time  instant
that  corresponds  to  the  end  of the  previously  applied  control.

©  2015  Elsevier  Ltd.  All  rights  reserved.
one remodeling

. Introduction

The micro-structure and evolution of the bone tissue depends
f a complex process in which different cells interact through bio-
hemical signaling substances [1]. The bone is continuously being
egraded (resorption) and rebuilt, in a process called remodeling. In

 healthy young human adult, bone formation and resorption are
quilibrated along time.

The cells that are responsible for these two processes are osteo-
lasts and osteoblasts. Osteoblasts produce new bone by collagen
ynthesis and making it calcify. Opposite, osteoclasts are responsi-
le for bone degradation. In the healthy body, the number of both
ypes of these cells must be properly coordinated. For that sake,
n important inducer of osteoclast differentiation is RANKL ( [2], p.
06). When an osteoclast precursor comes in contact with RANKL

olecules, this results in the maturation of an osteoclast. On the

ther way, osteoblasts produce also OPG that inhibits RANKL and
revents osteoclast maturation. The balance between RANKL and
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OPG signaling determines the degree of activation of osteoclasts
and settles bone remodeling.

Cancer disrupts this balance and causes both bone distur-
bances and the emission of substances that favor the occurrence
of metastases ( [2], pp. 703–709). In particular, multiple myeloma
is an hematological disease characterized by the unrelenting
proliferation of plasma cells that causes destructive osteolytic
lesions associated with severe pain and pathological fractures
due to decreased osteoblastic and increased osteoclastic activity
[3,4].

This article addresses the problem of designing therapies for the
myeloma bone disease that are based on control techniques. It is
stressed that the problem addressed has, as a consequence of the
above remarks, an interest to cancers other then multiple myeloma.
The use of optimal control allows to embed, in a systematic way, a
compromise between drug toxicity and tumor repression. Further-
more, a therapy based on a PI control rule is applied in parallel to
accelerate bone mass recovery.

Although optimal control provides a powerful tool to link clini-
cal requirements to mathematical objectives, the resulting control
law is open-loop, with all the inherent drawbacks. Since, in addi-
tion, some optimal drug administration profiles are such that, for a
long period, the drug dose is kept at a minimum level, being only

increased close to the end of the optimization time interval, this
means that the patient will remain with little or no treatment at
all for a significant period of time. To circumvent this problem [13],
proposes to split the optimization interval in two parts.
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To tackle the above problems, this article examines the possi-
ility of using a receding horizon (RH) strategy [17], in which, at

 given time t, an optimal control problem is solved in the time
orizon between t and t + T, called the prediction horizon. Of the
esulting control function, only the part between t and t + ı is actu-
lly used, with the whole procedure being repeated starting at t + ı.
his procedure has the advantage of performing a feedback action
very ı units of time. Usually, RH control is considered in the frame-
ork of discrete-time predictive control [18]. Since the samples of

he manipulated variable along the prediction horizon are left free,
n nonlinear problems they can be stuck atlocal minima. In this
aper, instead, Pontryagin’s minimum principle is used to select
hem. Although the idea of using Pontryagin’s principle together
ith RH control is not new [19,20], this approach is rather unex-
lored, and has not been previously considered for tumor growth
ontrol.

The contribution of this article consists therefore of the applica-
ion of a receding horizon controller based on optimal control to the
esign of therapies for cancer that involves an interaction between
one remodeling and tumor growth.

The paper is organized as follows: After this introduction, a brief
iterature review is made in Section 2, and the tumor growth mod-
ls considered are described in Section 3. Pontryagin’s minimum
rinciple (PMP) is reviewed in Section 4, together with a numeri-
al solution algorithm for optimal control problems and application
xamples related to the control of tumor growth. Section 5 formu-
ates the RH algorithm based on PMP  and shows results on tumor
rowth, and in Section 6 the PI controller for the bone mass regu-
ation is designed. Finally, Section 7 draws conclusions.

. Literature review

The above process of bone remodeling can be represented
y mathematical models that address both physiological and
athological situations. While many articles have been published
ddressing a variety of situations, we only cite here [5]. In this work,

 lumped nonlinear state-space model, with state variables given
y the number of osteoclasts and osteoblasts, has been developed,
eing able to predict a number of behaviors actually observed in
atients, including nonlinear oscillations.

The above model has been extended in [6] for the myeloma bone
isease, including the tumor size in the state and therapeutic drug
dministration as manipulated variables.

Although in [7] it has been pointed out, in a context other than
ancer, that the bone remodeling problem can be envisaged as an
ptimal control problem, cancer in relation to this process has not
et been the subject of studies to design therapies based on the sys-
ematic application of control methods. Existing studies like [5,6,8]
nly exploit simulations under different scenarios, but without any
eference to feedback or optimal control. On the other way, there
s a rich bibliography on the design of therapies for tumor repres-
ion, some addressing the bone marrow, of which [9–14] are some
xamples. However, the interplay between bone remodeling and
umor evolution is not considered in this bibliography, despite this
nteraction being more and more recognized of upmost importance
or several types of cancer. Indeed, as described in [2], p. 703, it
as been observed that carcinomas of the lung, breast and prostate
how a strong tendency to metastasize to the bone.

. Bone remodeling and tumor growth dynamics
The model used for the simulation study in this paper corre-
ponds to the one described in [5,6], with slight modifications.
hese modifications consist in the way that the drug affects the
sing and Control 24 (2016) 128–134 129

tumor growth equation, and also in the way the drugs affect the
remodeling part of the model.

3.1. Bone remodeling model

The bone remodeling process involves the activity of osteoclasts,
which are cells that breakdown the bone in a process called bone
resorption, and osteoblasts, that are responsible for bone formation.
The mathematical model that expresses the dynamic interaction
between osteoclasts C(t) and osteoblasts B(t), described in [5], uses
normalized variables and is

Ċ(t) = ˛1 C(t)g11 B(t)g21 − ˇ1 C(t), (1)

Ḃ(t) = ˛2 C(t)g12 B(t)g22 − ˇ2 B(t), (2)

where the dot denotes derivative with respect to time, parameters
˛i and ˇi, with i = 1, 2, represent the activity of cell production and
removal, and parameters gij, with i, j = 1, 2 describe the net effect
of all the factors that are involved in osteoclasts and osteoblasts
formation. For instance, the effect of all the factors produced by
osteoclasts that regulate its own  production are expressed by the
parameter g11, referred as autocrine regulation, while parame-
ter g12 express the regulation of osteoclasts in the production of
osteoblasts, referred as paracrine regulation. Conversely, param-
eters g21 and g22 are the paracrine and autocrine regulation,
respectively, of all the factors produced by osteoblasts. In this
model, the parameter g11 is responsible for the oscillatory mode
of the bone remodeling process [5].

The bone mass Z(t) is modeled by

Ż(t) = −�1 C∗(t) + �2 B∗(t), (3)

where parameters ki, for i = 1, 2, are the normalized activity of bone
resorption and bone formation constants. In (3), the number of cells
Y* (with Y denoting either C or B) is given by

Y∗(t) =
Y(t) − Ye if Y(t) > Ye,

0 if Y(t) ≤ Ye,
(4)

where Ye is the steady state of Ẏ(t).
In the presence of bone pathologies, the bone remodeling

dynamics is disrupted. In [6], the tumor size, X(t), dynamics is incor-
porated in the bone remodeling process, and the osteoclasts and
osteoblasts dynamics are described by

Ċ(t) = ˛1 C(t)g11

(
1+r11

X(t)
L

)
B(t)g21

(
1+r21

X(t)
L

)
− ˇ1 C(t), (5)

Ḃ(t) = ˛2 C(t)g12/(1+r11
X(t)

L )B(t)g22−r22
X(t)

L − ˇ2 B(t), (6)

where L and rij, with i, j = 1, 2, are nonnegative parameters.
The steady state solution of (5) and (6) is given by

Ce =
(

ˇ1

˛1

) 1−(g22−r22)
�

(
ˇ2

˛2

) g21(1−r21)
�

, (7)

Be =
(

ˇ1

˛1

) g12
(1+r12)�

(
ˇ2

˛2

) 1−g11(1+r11)
�

, (8)

where

� = g12 g21(1 − r21)
1 + r12

− (1 − g11(1 + r11))(1 − g22 + r22), (9)
and it is assumed that X is also in its steady state. This paper con-
siders the bone remodeling dynamics in the presence of a tumor
((3)–(6)), as described in [6].
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Fig. 1. Bone remodeling dynamics in the presence of tumor growth.

.2. Tumor growth models and therapies

Let X ∈ R  be a function of time that reflects the size of a tumor.
he Gompertz model [12] for the evolution of X is

˙ (t) = � X(t) log
(

L

X(t)

)
− �1 u(t) X(t), (10)

here � , �1 and L are positive parameters.
In the absence of treatment, model (10) leads to an S-shaped

rowth, with X tending to L when time increases. Fig. 1 shows the
umor growth dynamics and the bone remodeling dynamics.

The bone remodeling model parameters chosen are in accor-
ance with [6,5]. The bone cell formation constant rates assume
alues of ˛1 = 3 cells/day and ˛2 = 4 cells/day, and the bone
ell removal constant rates take values of ˇ1 = 0.2 day−1 and
2 = 0.02 day−1. The autocrine and paracrine parameters take val-
es of g11 = 1.1, g22 = 0, g12 = 1 and g21 = −0.5. The parameters rij take
alues of r11 = 0.005, r22 = 0.2, r12 = 0 and r21 = 0. The constants of the
ormalized activity of the bone formation and resorption assume
alues of k1 = 0.0748 cell−1 day−1 and k2 = 3.22 × 10−4 cell−1 day−1.
he initial values are C(0) = 15, B(0) = 316 and X(0) = 1 in normal-
zed units. The tumor growth model assume values of � = 0.005 and

 = 100.
The manipulated variable u, assumed to be positive, also causes

 decrease on the rate of growth of X. However, when X becomes
mall, the effect of u also decreases and there is no danger that X is
riven to negative values.

Two therapies are considered. One has the function of killing
he tumor cells and corresponds to the manipulated variable u(t)
n (10), being obtained with an optimal control law.

A second therapy is considered where bisphosphonates are
dministered to suppress the production of osteoclasts. This ther-
py is associated to the variable v(t). Therefore (5) becomes

˙ (t) = ˛1 C(t)g11

(
1+r11

X(t)
L

)
B(t)g21

(
1+r21

X(t)
L

)
− (ˇ1 + �2 v(t)) C(t),

(11)

here �2 is a nonnegative parameter. The design of this therapy
s formulated as a regulation problem that is to be solved with a
roportional-integral (PI) controller that drives the bone mass to a
rescribed value that is close to the healthy situation.

. Optimal control of the tumor size

In this section the optimal controller for the tumor growth sup-

ression is designed.

Assume that there is a period of time t, between t = 0 and t = T,
n which a therapy is to be specified, in the form of a function

 : [0,  T] → R. The parameter T is called the optimization horizon.
sing and Control 24 (2016) 128–134

When designing such a function, two conflicting objectives have
to be considered. First, the tumor size X is to be driven to a small
value, an objective that demands high values of u. Second, the tox-
icity, that is a function of the cumulative drug dose applied, is to
be minimized, an objective that calls for small values of u. Both
these objectives are expressed in mathematical terms in a cost func-
tional to be minimized. The following quadratic cost functional is
therefore considered

J =
∫ T

0

[X(t)2 + � u(t)2] dt, (12)

where � > 0 is a parameter that defines the balance between both
conflicting objectives. The quadratic cost assumes that the toxic
effects of the therapy are proportional to u2.

4.1. Pontryagin’s minimum principle

Consider the following generic optimal control problem:

Problem 1. Let

Ẋ = f (X, u), X(t0) = X0, (13)

with X ∈ R
n, t ∈ [0, T], with T constant and, for each t, u ∈ U ⊂ R,

where U is a convex set of admissible control values. It is assumed
that there is one and only one solution to (13).

Find u such as to minimize the cost

J = �(X(T)) + �

∫ T

0

L(X, u) dt, (14)

with � and L given functions that satisfy adequate assumptions
convexity so that the problem has a solution.

A set of necessary conditions satisfied by the solution of Problem
1 is given by

Pontryagin’s minimum principle [15]
Along an optimal trajectory for X, u and �, the following neces-

sary conditions for the solution of Problem 1 are verified:

• The state X and u verify the state equation (13), with the pre-
scribed initial condition.
• The co-state � verifies the adjoint equation

−�̇ = �T fX (X, u) + LX (X, u), (15)

with the terminal condition

�(T) = �X (X)|X=X(T). (16)

• For each t, the Hamiltonian function, defined by

H(�, X, t) = �T f (X, u) + L(X, u), (17)

is minimum with respect to u.

In (15), the following notation is used with i the line index and j the
column index

fX (X, u) =
[

∂fi
∂Xj

]
, LX =

[
∂L

∂Xj

]
, �X =

[
∂�

∂Xj

]
. (18)

4.2. Numerical solution

When considering the Gompertz model it is not possible to
obtain the optimal control law in an analytical way. A possibility
is to use the following numerical relaxation algorithm
Algorithm A1. Divide the time interval between t = 0 and t = T into
N subintervals of duration �t  = T/N. Let ti = (i − 1)�t, i = 1, . . .,  N + 1.
To each ti associate a value ui and let the linear interpolation of
these values in each subinterval define the control function.
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Recursively execute the following steps:

. For i = 1, . . .,  N + 1 select an initial guess of the optimal control,
ui. Set the iteration counter K = 0.

. Solve forward (from t = 0 to t = T) the state equation (13) with
the initial condition x0 and the control that results from the
interpolation of the uK

i
.

. Solve backwards (from t = T to t = 0) the adjoint equation (15)
with the terminal condition (16).

. For i = 1, . . .,  N + 1 update the vector of optimal control approxi-
mations by

uK+1
i
= argmin



(H(�(ti), x(ti), 
)) (19)

subject to uK+1
i
∈ U, ∀i.

. Set K = K + 1 and go to step 2. until convergence is met.

Steps 2. and 3. are solved with an appropriate ordinary differen-
ial equation solver. In the examples reported in the next section,

ATLAB ode45 with variable step-size and precision of 10−16 has
een used. For step 4. the cvx MATLAB interface has been used [16].

.3. Gompertz model with quadratic cost

Considering the Gompertz model (10) with the quadratic cost
12), the Hamiltonian function becomes

 = � � X log
(

L

X

)
+ X2 − �1 � X u + � u2, (20)

nd, from

∂H

∂u
= 0, (21)

ts minimum is

∗(t) = �1 �(t) X(t)
2 �

, (22)
hat is the optimal control law. The computation by (21) of the
inimum with respect to u of the Hamiltonian function assumes

hat the minimum is an interior point of the set of admissible con-
rol values U. This assumption has to be checked a posteriori. If

ig. 3. Effect of the parameter � of the cost functional on the O.C. law, for an horizon o
lotted  on the top two plots and the final tumor size X(T) is plotted on the left bottom p
he  cumulative drug dose, for each �, on the right bottom plot.
Fig. 2. Optimal control performance for an horizon of T = 180. Effect of the
parameter �.

the minimum occurs at the boundary of U, one must resort to a
minimization algorithm. The package cvx [16] can be used in this
problem. The advantage of using the closed formula (22) is its faster
computational speed.

Fig. 2 provides the optimal control law for an horizon of T = 180
days, for different values of �, showing that, for smaller values of �,
the drug dose increases, while the tumor size decreases. The final
value of u is always zero since, at every t, this variable is propor-
tional to �, and �(T) = 0. As a consequence, X(t) increases when t
approaches T. This situation could be changed by modifying the
cost in a way  that imposes a penalty on the final tumor size X(T).
From (16) it is concluded that neither �(T) nor u(T) would no longer
vanish. In this simulation, the parameter �1 has the value of 0.018
and X(0) = 80.

Fig. 3 illustrates the effect of parameter �. When � increases,
more importance is given to the toxicity term, associated to u, in
(12). Hence, the cumulative drug dose applied during the whole
horizon, P(T), decreases when � increases. The price to pay is that,
consequently, the final tumor size X(T) increases.

Figs. 4–6 show a sensitivity study of the results obtained with
optimal control when the parameters of the Gompertz model (10)
have values that are different from the ones assumed when per-

forming control design. Fig. 4 shows the time evolution of the tumor
size X, where the optimal control u computed with the nominal
parameter is applied to the model with values of the parameters

f T = 180 days. The final cost functional J(T) and the cumulative drug dose P(T) are
lot, as functions of the parameter �. The final tumor size is plotted as a function of
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Fig. 4. Tumor evolution of X when the optimal control is designed for the nominal
values of the parameters � and L.
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Fig. 7. RH control for different values of ı and the optimal control (O.C.) for the same
horizon T = 180 days.

Fig. 8. Quadratic cost of the RH control for different values of ı, with an horizon of
T  = 180 days. The optimal control J* is indicated by the arrow.

As shown in Fig. 7, close to t = T, RH control does not drastically
reduce the dose as happens with the optimal law, and decreases the
ig. 5. Change of the cost as a function of changes of �1 when the optimal control
s  designed for the nominal value of the parameter.

hat vary with respect to the nominal ones. Figs. 5 and 6 show sim-
lar results for the parameter �1. The sensitivity of the cost with
espect to ��1 is approximately linear, as shown in Figs. 5 and 6
how the time evolution of the tumor when �1 assumes different
alues, but always using the nominal value in controller design.

. Receding horizon control

In order to overcome the drawbacks of open-loop control, this
ection proposes the combination of the optimal control with a
eceding horizon (RH) strategy [17].

The numerical approximation of the optimal control obtained
rom Algorithm A1 can be recast in a RH framework as follows.

lgorithm A2. At time t, recursively compute the following steps:

. Solve the optimal control problem with x0 = x(t) (the state at time
t) as initial condition, from t to t + T, using Algorithm A1.

. Apply to the system the optimal control approximation obtained

in step 1., from t to t + ı.

. Make t ← t + ı and go to step 1.

ig. 6. Time evolution of X for different values of parameter �1, when the optimal
ontrol is designed for the nominal parameters.
Fig. 9. Cumulative drug dose applied, P(T), for different values of ı, with an horizon
of  T = 180 days.

5.1. Gompertz model with quadratic cost

Figs. 7–9 compare the optimal control with RH control for dif-
ferent values of ı.
final tumor size. For optimal control this drawback can be circum-
vented by using a convinient terminal cost. However, the optimal

Fig. 10. RH closed-loop control performance for an horizon of T = 180 days and ı = 60
days, in the presence of disturbances. The optimal control (O.C.) for the same horizon
is  also plotted.
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Fig. 11. Bone remodeling and tumor growth dynamics with (solid lin

ontrol is designed for a horizon of fixed length. If the control action
s to be kept for a indefinite period of time, it is better to use RH
ontrol. Another advantage of RH control with respect to optimal
ontrol is that RH control provides a feedback action since it is
ble to update the state variables in order to reject disturbances.
igs. 8 and 9 show the decreasing cost and cumulative drug dose
s ı increases. The highest lower bound of the cost is, of course, the
ne obtained for ı = T.

Fig. 10 illustrates the capacity of the RH control to reject a dis-
urbance, in contrast with the optimal controller. In the simulation
eported in Fig. 8, a stochastic disturbance has been added to the
ompertz model. This disturbance may  correspond to a model-

ng error, either due to a model/controller parameter mismatch,
r associated with unmodeled dynamics. The disturbance model
as been selected merely for exemplificative purposes, and cor-
esponds to a sequence of independent random variables with a
aussian distribution, with zero mean and variance 2, with a samp-

ing interval of 0.5 days, that is passed by a filter with transfer
unction

n(s) = 0.5
s + 0.5

. (23)

When the optimal controller is used, no corrective actions to
ounteract the disturbance are taken because the manipulated vari-
ble is computed off-line, in a blind way. Instead, when using RH

ontrol there is a feedback associated to the measure of tumor
ize that influences the initial condition of the computation every

 = 60 days. As a consequence, RH control is able to counteract the
isturbance and leads to a smaller tumor size.
d without (dashed lines) the PI controller for bone mass regulation.

6. PI control for bone mass regulation

If the tumor size is reduced due to the specific therapy that is
dosed by the optimal controller, the bone mass will increase, but
very slowly. In order to speed-up bone mass recovery, a PI controller
for the bone mass regulation is presented in this section. In this case
it is considered that the optimal control law for the tumor growth
is applied to the system and that a PI controller is used to suppress
the osteoclast production by scheduling an adequate therapy. The
PI controller is designed to track the error e(t) between the desired
value of the bone mass (100%) and the measured bone mass Z(t),
and to compute the appropriate drug dose v(t) in order to prevent
the bone mass resorption from the osteoclasts. The control signal
is the drug dose v(t), which is applied in (7), and is defined by

v(t) = Kp e(t) + Ki

∫ T

0

e(t) dt. (24)

Fig. 11 shows the effect of a PI controller with Kp = 0.01 and
Ki = 0.02, for �2 = 0.03, applied to the system with the RH controller
designed for T = 180 days and ı = 60 days for the tumor growth con-
trol. The PI controller is able to drive the bone mass to the desired
value faster than without PI control. The controller action v(t) sup-
presses the osteoclasts production that leads to higher values of the
bone mass.

7. Conclusions
The combination of optimal and receding horizon control pro-
vides a natural framework to obtain therapies for tumor growth,
that was complemented with a PI controller for bone therapy.
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ptimizing the therapy can be readily formulated as an optimal
ontrol problem, whose solution yields a time profile for drug
dministration. This open-loop solution can be transformed into a
eedback control law, with all the inherent advantages, by using the
eceding horizon strategy. In the example provided, RH improves
ontrol performance with respect to the open-loop optimal control
n the presence of disturbances.

A number of important issues were not addressed in this paper.
he first one is drug resistance and multi-drug treatment.

Other aspects are related to improving the model in what con-
erns drug administration, and they comprise the inclusion of
harmacokinetic drug models, modeling the fact that drugs have
o effect below some threshold, and the fact that drugs are not con-
inuously perfused in the patient but instead are administered in
oncentrated time doses that are best represented as a sequence of
mpulses.

Although the above aspects are essential when modeling a real-
stic therapy of cancer, they exceed the objective of this paper that

as circumscribed to make a first illustration of how the reced-
ng horizon can be applied to cell-kill strategies to turn an optimal
rofile into a feedback control law, and complement it with a PI
ontroller to moderate osteoclast excessive action and speed-up
one mass recovery.
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