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a b s t r a c t 

This article considers a new mathematical model for the description of multiphasic cell growth. A linear 

hybrid model is proposed and it is shown that the two-parameter logistic model with switching param- 

eters can be represented by a Switched affine AutoRegressive model with eXogenous inputs (SARX). The 

growth phases are modeled as continuous processes, while the switches between the phases are consid- 

ered to be discrete events triggering a change in growth parameters. This framework provides an easily 

interpretable model, because the intrinsic behavior is the same along all the phases but with a different 

parameterization. Another advantage of the hybrid model is that it offers a simpler alternative to recent 

more complex nonlinear models. The growth phases and parameters from datasets of different microor- 

ganisms exhibiting multiphasic growth behavior such as Lactococcus lactis, Streptococcus pneumoniae , and 

Saccharomyces cerevisiae , were inferred. The segments and parameters obtained from the growth data are 

close to the ones determined by the experts. The fact that the model could explain the data from three 

different microorganisms and experiments demonstrates the strength of this modeling approach for mul- 

tiphasic growth, and presumably other processes consisting of multiple phases. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

Many microorganisms exhibit multiphasic growth behavior. A

pecial case of multiphasic growth caused by substrate preference

s diauxic growth, which was first studied in the 40’s by Monod

14,15] . This phenomenon arises when an organism is growing

n a medium consisting of two (or more) different types of car-

on and energy sources. Among others, Streptococcus pneumoniae

hows diauxic growth on mixed medium. The organism first con-

umes the substrate that supports the fastest growth (preferred

ubstrate) followed by consumption of the remaining secondary

arbon source(s). Theoretically, the process includes two types of

hases: exponential growth and diauxic lag. The bacteria process

he preferred substrate in an initial exponential growth phase.

hen a diauxic lag is followed, when the bacteria do not grow sig-

ificantly but synthesize enzymes in order to be able to process
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he next medium in another exponential growth phase. The cycle

epeats until no further carbon sources are available. 
Yeast ( Saccharomyces cerevisiae ) shows another type of multi-

hasic growth, where the diauxic behavior is caused by ethanol

roduced by the fungi itself. The preferred source of carbon and

nergy of the organism is glucose, but while metabolizing glu-

ose, the cells release ethanol in the medium. When the glucose

ource becomes limiting, the cells exhibit a so called diauxic shift

y switching their metabolism to aerobic utilization of ethanol.

ompared to glycolysis, the ethanol phase is characterized by de-

reased growth rate [10] . 
Inhibitions or metabolic burdens can also cause multiphasic

rowth. In the Lactococcus lactis example considered [16] , the

iphasic growth behavior can be derived from a metabolic burden

ue to overexpression of proteins or a metabolic imbalance caused

y accumulation of a toxic intermediate. 
In order to infer the properties of the process, such as maximal

rowth, the time-series has to be segmented and a model has to

e fitted to each segment. In many cases, segmentation and fitting

s still done by hand (usually fitting a linear model to the loga-

ithm of selected points) and checked visually by the experts. De-

pite tools for automated fitting of biological growth curves like

GFit [22] are readily available online for fitting bacterial growth

http://dx.doi.org/10.1016/j.mbs.2016.06.013
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Fig. 1. Simulation example with different parameters. The arrows point towards 

growing parameters. Also the darker lines represent larger parameter values. 
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data, they do not consider multiple phases. In this paper a novel

approach is considered for multiphasic cell growth segmentation

and modeling using hybrid linear systems. 

A number of different Ordinary Differential Equation(ODE)

models were proposed to describe the growth of biomass on differ-

ent species starting with the famous hyperbolic Michelis–Menten

like equations of [15] to the more sophisticated recent develop-

ments. A simple idea to address multiphasic growth is to introduce

a lag representing the time-shift between different logistic models

[2] . Some approaches include additional state variables incorporat-

ing further factors in the model, like enzyme levels or substrate

concentrations [5,6,8,20] , however this also causes an increased

number of parameters, where usually a subset of the parameters

is not directly estimated but taken from the literature [5,6] . 

Hybrid models consist of both continuous and a discrete states

(parameters) [13] . The advantage of using hybrid systems is that

the dynamics typically can be modeled with continuous state

evolution and the transitions between submodels are represented

by the changes of discrete states. From strictly computational

perspective, it is plausible to interpret the multiphasic growth

phenomenon as a hybrid system, because the same model may

describe all the phases of the process, while the parameters vary

between the phases. 

Here a switched hybrid linear model is proposed that is able

to explain multiphasic growth data. The model is continuous,

and the switches between the phases are modeled with discrete

events. Compared to previous models, the advantages of the hybrid

model is its linearity, simple and straightforward interpretability,

the reduced number of parameters, yet without loss of descriptive

power. 

2. Methods 

In this section, first the proposed model for multiphasic growth

is described, then the identification algorithm is reviewed, finally

the biological datasets are introduced. A sample MATLAB imple-

mentation of the methodology and the proposed model is freely

available is freely available under the terms of GNU Public License

(GPLv3) from the authors webpage: http://andrashartmann.info/ . 

The goal of modeling is to accurately describe a given process.

Hereafter, a first-order Switched affine AutoRegressive model with

eXogenous inputs (SARX) model [17] is proposed for multiphasic

growth. SARX models are switched extensions to affine linear au-

toregressive models, defined as the concatenation of several sub-

models. Each submodel corresponds to an AutoRegressive model

with eXogenous inputs (ARX) of fixed dimension. Consider the fol-

lowing system in input-output form 

y (t) = θ T 
η(t) 

[
ϕ(t) 

1 

]
+ ε(t) (1)

ϕ(t) = [ y (t − 1) . . . y ( t − n a ) u ( t) . . . u ( t − n b )] T , (2)

where the input u ( t ) is observed and so is the output y ( t ) which

is corrupted by an additional noise term, ε( t ). When fitting the

model, y ( t ) corresponds to the actual observations. The regres-

sion vector ϕ( t ) of dimension n = n a + n b consists of past mea-

surements and inputs. The notation �(t) = [ 
ϕ(t) 

1 
] is introduced

for the extended regression vector. The time-dependent parame-

ter vector θ (t) = θT 
η(t) 

∈ R 

n at each time-instance belongs to a set

� = { θ1 , . . . , θK } of cardinality K , representing the submodel set.

The discrete finite range function, η(t) : R → { 1 , . . . , K } indicates

which submodel generates the output at time-instance t , and is re-

ferred as switching sequence or discrete state. 
.1. Logistic growth 

As shown in [12] , the discrete Verhulst logistic model for

onophasic growth [24] has a linear representation, therefore

 switching extension of the model can be corresponded to a

ARX model. Hereafter, a first-order SARX model is proposed

or multiphasic growth by showing that the continuous logistic

odel also can be represented by an affine AutoRegressive model

ith eXogenous inputs (ARX). Consequently, when considering

witching parameters, the model can be represented by SARX. It is

ore convenient to work with the continuous model, because no

iscretization is needed. 

The starting point of the model is the continuous two-

arameter logistic model. 

d x 

d t 
= 

˙ x (t) = rx (t ) 

(
1 − x (t ) 

C 

)
, (3)

here the state variable x represents the biomass, the parameter r

efers to the maximum growth rate, and C is the carrying capac-

ty (level of saturation). To identify logistic models of longer lag

ime, some authors [18,24] suggest to fit the logistic model log-

easurements log( x ). Here, no log-transformation was applied be-

ause no long lag times were expected in the beginning of growth

hases. Instead, lag times are considered to be separate phases.

he differential equation in the form shown in Eq. (3) is nonlin-

ar. However, since the biomass is strictly positive ( x > 0), both

ides of Eq. (3) can be divided by x ( t ). Applying the chain rule for

he derivation, this also corresponds to the logarithmic derivative

˙ x (t) 

x (t) 
= r 

(
1 − x (t) 

C 

)
= 

d log x 

d t 
, (4)

ith the substitutions of variables 

 (t) = 

˙ x (t) 

x (t) 
; θ = 

[
− r 

C 

r 

]
, (5)

he model may be represented by the following linear autoregres-

ive form 

 (t) = θ T 

[
x (t) 

1 

]
. (6)

he flexibility of the model is shown in Fig. 1 , by simulating with

ifferent parameters r and C . 

http://andrashartmann.info/
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Fig. 2. Lactococcus lactis growth on galactose. Expression of galPMKT under the nisin promoter was induced by addition of nisin (1 μg/l) at OD600 of 0.25. 
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.2. Model identification 

The parameter identification problem for SARX models can be

tated as 

roblem 1. Given a sequence of input-output pairs { u (t) , y (t) } T t=1 ,

he model orders n a , n b and the cardinality of the submodel set K ,

stimate the parameter vectors θk ; k = 1 , . . . , K and the switching

equence η(t) ; t = 1 , . . . , T . 

Recent developments on identifying hybrid switched systems

rovide convenient framework for system identification [11] . The

roblem of finding the globally optimal parameters of SARX mod-

ls may be formulated as a mixed integer program [4,19] 

minimize 
∑ T 

t=1 

∑ K 
k =1 � 

(
y (t) − ˆ θ T 

k 
�(t) 

)
X t,k 

s.t. 
∑ K 

k =1 X t,k = 1 ∀ t ∈ [1 . . . T ] 
X t,k ∈ { 0 , 1 } , 

(7) 

here � ( ·) is an arbitrary p -norm. The minimization is with re-

pect to the parameter estimates ˆ θk , k = 1 . . . K and the matrix X ,

onsisting of T × K binary variables. The significance of the binary

ariable X t,k is to indicate whether or not a data point belongs to

ubmodel k at time instance t . The discrete state can be recovered

s 

(t) = k ⇐⇒ X t,k = 1 . (8) 

ote however that solving this kind of problems require exhaustive

earch algorithms with worst-case complexity that is exponential

n the size of the input, O(K 

T ) . Practically, this means enumerating
ll the possible integer combinations of the discrete state. There-

ore the mixed integer programming approach is computationally

ffordable only for problems with short time-series [17,19] . 

Other approaches involve heuristics in order to deliver esti-

ates in tractable time, with the trade-off that the estimates are

nly approximate solutions. In this work, SON-EM, a three-step al-

orithm introduced by Hartmann et al. [12] was used for system

dentification and will be briefly described here. 

As a preliminary step, a Sum Of Norm (SON) regularized least

quares optimization problem is solved 

inimize 
∑ T 

t=1 || y (t) − ˜ θ T (t )�(t ) || 2 + λ
T ∑ 

t=2 

|| ̃  θ (t) − ˜ θ (t − 1) || p . 
(9) 

Here the optimization is with respect to ˜ θ (t) , yielding the pa-

ameter estimates after the first step. The optimization problem

n Eq. (9) implies a positive scalar regularization parameter, λ,

hich is the only one tuning parameter of the method. Reasonable

values are typically of magnitude between 0.1 and 10, However

actors like the signal to noise ratio, and the values of the parame-

ers may influence the ideal choice of λ. It was found in [12] on a

lowly varying system, that the final results are not highly sensitive

o the tuning parameter. This is a major advantage of the identifi-

ation method, because the tuning parameter does not have to be

xactly determined in order to yield good final results. In the rest

f this study, for all the experimental data, the tuning parameter

as set uniformly to λ = 0 . 5 . 
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Fig. 3. Streptococcus pneumoniae D39 grown on glucose and cellobiose as presented by Boianelli et al. [5,6] . 
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The expression || · || p denotes for the p -norm, where the design

variable p plays a crucial role by setting the norm of the regular-

ization. Imposing a smoothing condition on the switches of the pa-

rameters has computationally convenient properties since, for p ≥
1, one obtains a continuous convex problem. If sparsity of the so-

lution is favored, in the sense that the change of one dimension in

the parameter vector is preferred against change in all the dimen-

sions, p should be set to one, leading to a least absolute shrinkage

and selection operator (Lasso) flavor � 1 -norm regularization, simi-

lar to group Lasso [23] . 

Although the solution of Eq. (9) is an estimate of the pa-

rameters, since here the cardinality of the submodel set is not

limited to K , it is not guaranteed to be a feasible point of

the original problem. The rationale to apply Expectation Maxi-

mization (EM) clustering for mixture of Gaussians as described

in details in [12, Appendix A] , in the second step is to con-

strain the cardinality of the submodel set and to estimate the

switching sequence. Note that theoretically any other unsupervised

learning algorithm could be applied here, that casts the prelimi-

nary estimates into K distinct sets, such as clustering or labeling

methods. 

The solution after the second step is feasible, but may not be

optimal in the mean squared error sense because the clustering

only operates on 

˜ θ (t) , independently from the observations. This

problem is tackled in the third step by replacing the estimated

switching sequence into Eq. (7) such as to obtain the following

convex quadratic problem 
minimize 
∑ T 

t=1 || y (t) − ˆ y (t) || 2 
s.t. ˆ y (t) = 

ˆ θ T 
ˆ η(t) 

�(t) . 
(10)

ere the optimization is only with respect to ˆ θk , k = 1 . . . K, be-

ause ˆ η(t) is given from step 2. Solving this optimization problem

n the third step yields parameter estimates that are optimal ac-

ording to the estimated switching sequence. The SON-EM algo-

ithm is summarized in Algorithm 1 . 

lgorithm 1 SON-EM algorithm for parameter estimation of hy-

rid time-varying parameter systems. 

1. Solve the convex optimization problem of Eq. (9) to deliver pre-

liminary estimates ˜ θ
2. Proceed with EM clustering on 

˜ θ to obtain K classes 

3. Solve the convex optimization problem of Eq. (10) 

Besides fitting the model, it is important to estimate the appro-

riate number of subsystems. The biological analysis of the pro-

esses for L. lactis and S. pneumoniae suggest three phases, namely

n initial growth phase, a lag phase and a secondary growth phase.

ccordingly, the number of submodels is expected to be K = 3 . For

. cerevisiae , the growth rate was reported to decrease at the end of

he first growth phase [21, Supplement] , thus here the number of

ubmodel is supposed to be K = 4 . To support (or contradict) these

ypotheses, model selection was performed, where the estimation

s performed in an iterative process as follows. Fittings are made
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Table 1 

Multiphasic growth datasets. 

Organism Strain Reference 

Lactococcus lactis NZ90 0 0 This article 

Streptococcus pneumoniae DP1004 [5,6] 

Saccharomyces cerevisiae Wild type [21] 
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ith increasing number of subsystems, and the Mean Squared Er-

or (MSE) of each reconstruction is computed. As a rule of thumb,

he MSE decreases with increasing K , the optimal value is reached

hen the change in MSE is sufficiently small. This is justified by

he fact that if no significant change in MSE is observed, then in-

roducing a new subsystem would not further improve the recon-

truction. Also, the common measures for model selections such

s Akaike Information Criterion (AIC), AIC corrected for small sam-

le size (AICc) and Bayesian Information Criterion (BIC) [1,7] were

omputed. 

IC = T ln 

(̂ σ 2 
ε 

)
+ 2 K (11) 

IC = T ln 

(̂ σ 2 
ε 

)
+ K ln (T ) (12) 

ICc = AIC + 

2 K(K + 1) 

T − K − 1 

(13) 

here ̂ σ 2 
ε is the empirical error variance 

̂ 2 
ε = 

1 

T 

T ∑ 

t=1 

(
x (t) − ˆ x (t) 

)2 
(14) 

.3. Dataset 

Growth data of three different or ganisms were used as pre-

ented in Table 1 . Lactococcus lactis strains NZ90 0 0[pGalPMKT]

nd NZ90 0 0[pGalPMKTpgmA] [16] were grown in batch mode in

hemically defined medium containing 1% (w/v) galactose under

naerobic conditions in rubber-stoppered bottles (200-ml) stati-

ally at 30 °C. Chloramphenicol was used at 5 μg ml −1 . Expres-

ion of genes cloned downstream of the nisin-inducible P nisA pro-

oter was induced when the optical density at 600 nm (OD 600 )

as 0.25 by addition of a nisin solution (1 μgl −1 in a 50% (v/v)

thanol solution). Prior to nisin addition cells were growing expo-

entially at maximal growth rate of 0.31 h 

−1 , a value slightly lower

han that observed for the strain NZ90 0 0 harboring the empty vec-

or (μ, 0.34 h 

−1 ). Addition of nisin caused severe growth impair-

ent for a period of 12 h (between the 5th and the 17th hour),

ollowed by a second growth phase at a maximal rate of 0.19 h 

−1 .

he biphasic growth behavior can be derived from a metabolic
Table 2 

Estimated parameters for multiphasic growth datasets. The parameters a

in parenthesis when available. 

θ1 

L. lactis pGalPMKT r 0 .34 (0.3

C 33 .87 

pGalPMKTpgmA r 0 .37 (0.3

C 36 .52 

S. pneumoniae 0.3% cellobiose r 2 .13 

C 0 .05 

1% cellobiose r 2 .70 

C 0 .03 

S. cerevisiae r 0 .38 (0.4

C 2 .23 
urden due to overexpression of four proteins or a metabolic im-

alance caused by accumulation of a toxic intermediate. It was

lso observed that lowering the concentration of nisin added to

ells growing on galactose attenuates the biphasic profile (data not

hown). It should be noted, however, that glucose-grown cells do

ot display biphasic growth upon nisin-induction of the nisA pro-

oter. Interestingly, nisin-induction of the nisA was reported to be

ignificantly impeded in the presence of galactose and an active

eloir pathway [9] . These authors proposed that galactose com-

etes with nisin for the same or overlapping binding sites on the

isA promoter, and thus it is not implausible to suggest that this

ntagonistic effect leads to a transient growth defect. 

The Streptococcus pneumoniae data was originally published

n [5,6] . Fittings were made to two time-series with growth on

lucose and beta-glucoside cellobiose, where the cellobiose con-

entration was of 0.3% and 1%, respectively. 

Wild type Saccharomyces cerevisiae was grown in batch condi-

ions on minimal medium containing 11.11 mM glucose as a sole

ource of carbon and energy as described in [21] . 

. Results 

Almost perfect reconstructions were achieved to all the time-

eries, as simulation overlaps with experimental data when esti-

ating with K = 3 submodels. For the L. lactis data, the model

election shown in Fig. 2 similar MSE scores for two and three

ubsystems were obtained, just slightly higher than for four sub-

ystems. Thus, from a computational point of view, the two-

ubsystem model should be preferred. On the other hand, biolog-

cal insights into the process suggest three subsystems: an initial

rowth phase, a growth impairment period (lag), and a secondary

rowth phase. Thus, in order to compare with a priori biologi-

al knowledge, the three-subsystem model was chosen for further

nalysis. We also report the results for a two-subsystem model

see reconstruction in Appendix A , Fig. A.5. ), which could also have

 biological interpretation: after an initial growth impairment pe-

iod, the growth is resumed with the same parameters as in the

nitial growth phase. This would be an interesting hypothesis to

est experimentally. The time of transition to the lag phase was

ell identified, however the length of the detected lag phase was

onger than the ones determined by the experts (at 19 h instead

f 14 h). Table 2 shows that the automatically identified maxi-

al growth parameters are close, but slightly above the parame-

ers identified by hand. 

The model yielded a good fit to the Streptococcus pneumoniae

ata as seen in Fig. 3 . Model selection predicted the number of

ubsystems to be three for both experiments, corresponding to the

rst growth phase, the lag and the second growth phase. For lower

ellobiose concentration the lag phase is significantly shorter or in-

xistent. 
re grouped by the species. Values determined by the experts are 

θ2 θ3 θ4 

1) 0 .02 (0.02) 0 .21 (0.19) 

2 .20 2 .96 

3) 0 .07 (0.03) 0 .29 (0.21) 

0 .73 2 .51 

0 .10 0 .58 

9 .76 4 .22 

0 .05 0 .71 

0 .05 71 .26 

0) 0 .87 0 .21 0 .17 (0.05) 

1 .74 1 .36 5 .26 



88 A. Hartmann et al. / Mathematical Biosciences 279 (2016) 83–89 

0 10 20 30 40
0

0.2
0.4
0.6
0.8

1

time (h)

S. cerevisiae

0 10 20 30 40
0
2
4
6
8
10

r
C

0 10 20 30 40
0

2

4

time (h)

B
io

m
as

s 
(g

d
w

/l)

Reconstruction
Measurements

1 2 3 4 5
0.5

1

1.5

2

Number of submodels

S. cerevisiae

MSE

1 2 3 4 5
−400

−350

−300

−250

Number of submodels

AIC
AICc
BIC

Fig. 4. Growth of Saccharomyces cerevisiae as described by Slavov et al. [21] . 
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Fig. A.5. Lactococcus lactis growth on galactose. Expression of galPMKT under the nisin promoter was induced by addition of nisin (1 μg/l) at OD600 of 0.25. 
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Regarding the results obtained for S. saccharomyces , the ex-

pected number of phases is three: a glucose growth phase a lag

without growth, and an ethanol growth phase. However growth

rate was reported to be declined at the end of the first growth

phase [21, Supplement] . This corresponds to the model selection

results in Fig. 4 indicating 4 phases. The automatic segmentation

shows a good match to previously published results. Estimated

growth parameters for the glucose phase are close to the reported

ones, while the estimated growth rate on the ethanol phase re-

mains higher than the reported value. The reason behind this dif-

ference is presumably that previously fitting was only made to the

second part of the last phase. The complete results for all the three

datasets using one to five subsystems are presented in Supplemen-

tary material. 

4. Discussion 

A hybrid model for multiphasic bacterial growth has been pre-

sented, including 2 × K parameters, where K is the number of sub-

systems considered. Unlike recently developed models [5,6,8,20] ,

the proposed model is linear, which also follows that there are no

identifiability issues. The simplicity of the model originates from

its switching nature. The separate phases of the process are mod-

eled with the same dynamics, but with different parameters for

each phase. The fact that in all the cases the model could explain

the experimental data illustrates its relevance. 
It is arguable that the proposed model does not incorporate pa-

ameters of the cellular mechanisms of the organism, and as such,

ts predicting ability is limited. On the other hand, in the conven-

ional setups the only available measurement is biomass data, and

arameters of more complicated models are either interpolated or

arameters from historical studies are used, moreover, they may

uffer from identifiability issues. The hybrid interpretation of the

rocess is that the organism shows constant behavior (parame-

ers do not change) between the discrete events (e.g. the collapse

f a carbon source or overcoming of a toxic effect) indicating the

hanges of parameters. And however the current modeling frame-

ork does not allow the prediction of the discrete events, analysis

f retrospective data is promising. 

The obtained segmentation results were close to the ones de-

ermined by the experts, however for the L. lactis data the number

f subsystems was estimated to be two against the expected three,

lthough this alternative hypothesis can also be biologically inter-

retable. Moreover the length of the detected lag phase for the L.

actis data was slightly longer then determined by the experts. As

he growth phase itself may start with a lag phase, in general it is

ard to decide the exact time of the transition when the dynamics

s low. To identify logistic models of longer lag times, it is sug-

ested to make the fittings to the logarithmic growth ratio [18,24] .

s in the data presented, most of the growth phases are not ex-

ected to start with lag, instead of applying the logarithmic trans-

ormation, lags were considered as separate phases. Other bacterial

rowth models like the Gompertz [24] or Baranyi model [3] may
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rovide more flexibility, and will be addressed in future 

esearch. 

. Conclusion 

A hybrid SARX model for multiphasic bacterial growth has been

resented, and analyzed in the light of real experimental growth

ata from three different species. The datasets were segmented

nd parameters were identified using the SON-EM method [12] .

he results indicate that in most cases the partitioning of the data

orresponds to what was determined by the experts, and the iden-

ified growth parameters are also close to the published ones. An

verall very good reconstruction to the experimental dataset was

chieved on all the species showing the adequacy of the modeling

pproach. It is hypothesized that this could be a new automatic

ay to partition and identify corresponding parameters of exper-

mental multiphasic growth data or other processes consisting of

ultiple linear phases. 
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